Sparse coding of human motion trajectories with non-negative matrix factorization

نویسندگان

  • Christian Vollmer
  • Sven Hellbach
  • Julian Eggert
  • Horst-Michael Groß
چکیده

We use shift-invariant Non-negative Matrix Factorization (NMF) for decomposing continuous-valued time series into a number of characteristic primitives, i.e. the basis vectors, and their activations, which results in a modelindependent and fully data driven parts-based representation. We interpret the basis vectors as short parts of motion that are shared between all trajectories in the data set, and the activations as onset times of those parts. The extension of the shift-invariant NMF by a new competition term between adjacent activations allows to gain temporally isolated activation events, which further supports this interpretation. We show that the resulting sparse and compact representation can be used for the prediction of motion trajectories, and that it can be beneficial for classification, because it allows the application of simple standard classification models with few parameters. In this paper we show that basis vectors can be extracted, which can be interpreted as short motion segments. We present results on trajectory prediction, and show that the sparse representation can be used for classification of trajectories of a single joint, like the one of a hand, obtained by motion capturing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Non-negative matrix factorization for visual coding

This paper combines linear sparse coding and nonnegative matrix factorization into sparse non-negative matrix factorization. In contrast to non-negative matrix factorization, the new model can leam much sparser representation via imposing sparseness constraints explicitly; in contrast to a close model non-negative sparse coding, the new model can learn parts-based representation via fully multi...

متن کامل

Application of Non-negative sparse matrix factorization in occluded face recognition

In order to reduce the impact of block for the rate of face recognition ,in this paper, through the control of sparseness in the non-negative matrix factorization , the face image do non-negative sparse coding to obtain the eigenspace for the image. The experiment uses the ORL face database. The experimental results show that using NMFs obtains Eigenfaces with the local features of face and has...

متن کامل

Online Learning for Matrix Factorization and Sparse Coding Online Learning for Matrix Factorization and Sparse Coding

Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set, adapting it to specific data. Variations of this problem include dictionary learning in signal processing, non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2014